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Abstract: -In this paper, the robust stabilization and control of an inverted pendulum on cart is investigated; the 

robustness is guaranteed against the external inputs; disturbances and measurement noises, and parametric 

uncertainties. The contribution is based on creating this nonlinear system as a Linear Parameter Varying 

System (LPV) to allow the applying of robust LPV techniques possible. In addition, one of the more constraints 

is the selection of the weighting functions that represent the desired performance; in this work we used two 

approaches of optimization nature-inspired algorithms; Genetic Algorithms (GA) and Evolutionary Strategies 

(ES) to find the weighting functions’ parameters, with guarantee the robustness against external signals and 

uncertainties. Last more point, the represented underactuation constraint of the selected vehicle; we extend the 

robust stabilization by considering the both of degrees of freedom; the rotational and the translational. The 

controllers we get are robust against the external signals and uncertainties, and with the nonlinear range of 

angles as initial conditions.   

 

Keywords: -Inverted Pendulum on cart, Robust Control, Underactuated Systems, Nature-Inspired Algorithms, 

Linear Parameter Varying Systems, H∞. 

 

1 Introduction 
The H∞ control is one of efficient control 

approaches on the robustness problem; where the 

objective is to minimize the gain between the 

external input signals and the so-called output 

signals [1] basically developed for the Linear Time 

Invariant systems (LTI systems). In recent years the 

Linear Parameter Varying systems (LPV systems) 

have been interested by researchers, and several 

works have investigated the control synthesis and 

stability analysis of the LPV systems [2],[3],[4], 

because of their main advantage to allow the 

modeling a systems that basically depend on time 

varying parameters or to approximate the nonlinear 

systems. Alternatively to divide the nonlinear 

system in a set of LTI systems according their 

operating points, the LPV system is developed by 

considered the nonlinearities as varying parameters, 

it is called here a quasi-LPV system [5], [6], which 

is what we are studying in this paper. 

There are common approaches to develop the 

LPV systems from their origin, nonlinear. First, the 

polytopic approach; the parameters are used at each 

vertex in the polytope, as main disadvantage of this 

approach is that it requires an exponential number of 

controllers, therefore, solving a large numbers of 

Linear Matrices Inequalities (LMI), the compute 

effort is expensive [7], [8], [9]. Second, gridding 

linearization; with this approach, there are simple 

controllers to implement, but, infinity elements 

because the descritization on the parameters space is 

not well defined [10]. Third and last one, the LPV 

system with Linear Fractional Transformation 

(LFT), it is common on separating the uncertainties 

from the nominal model in robust control, the same 

structure we will get with the varying parameters, 

the main advantage of this approach is that we solve 

a minimal LMI to design a single controller, this last 

has a self-scheduled structure around the parameters 

[11]. 
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The presented paper aims to investigate the 

design of a robust controller for an inverted 

pendulum on cart by using an LPV technique. The 

inverted pendulum is a classical benchmark, it has 

two Degrees Of Freedom (DOF); the translational 

movement of the cart (denote x) and the angular 

position of the pendulum (denote θ), when its 

motion is controlled by a single horizontal force 

which moves the cart forward or backward. In 

previous work [12], we eliminated the translational 

DOF by taking a reduced model; the model was 

presented by two states (θ,   ), the objective was 

stabilize the pendulum in null angle with robustness 

against disturbance and uncertainties. 

The novelty in this work is presented within these 

three points; include the friction effect and consider 

the velocity as a state (a), getting optimal weighting 

functions (b) and both of the 2 DOF (θ and x) are 

stabilized on the same time (c). 

a) The same technique of the controller design 

(LFT-based LPV H∞) is applied here, but unlike 

[12], we manipulate with the complete model, 

considering the friction effect, that means that the 

translational velocity has been included as a state. 

We note here that we don’t consider the 

translational position (x) as a state; it isn’t necessary 

to measure or estimate the position of a personal 

pendulum vehicle (i.e. segway) when the objective 

is to stabilize it because the rider can move it by 

inclining himself.  

b) One of the problems we face in the design 

of H∞ controller is the weighting functions selection, 

which depends on experimental skills, many 

researches were cared about this issue [1], [13], 

[14], but, there is no general methodology to select 

the weighting functions. This problem is more 

shown on complex systems when the performance 

specification is not (or is difficult to) defined; when 

we impose such, optimal, desired performance 

presented by the weighting functions, the H∞ 

controller design process maybe failed to find a 

suitable controller for such performance, the 

solution is that we have to demean the performance 

specification. Nature inspired stochastic 

optimization tools have used in many researches to 

get the optimal weighting functions parameters with 

existing H∞ controller, for LTI system [15], and for 

a polytopic-LPV system [16], [17]. These tools are 

more required in the multi-objective problem, which 

is very common on controller designing process. In 

order to get the optimal weighting functions’ 

parameters, we use in this paper two evolutionary 

algorithms; first, the Genetic Algorithm (GA) which 

is based on Darwinian evolution, is created by 

Holland [18], second, the Evolutionary Strategies 

(ES), the first evolutionary algorithm, which is 

based on biological evolution, is created by Ingo 

Rechenberg [19]. 

c) With 2DOF (x and θ) and just one input 

(Force), the inverted pendulum is an Underactuated 

Mechanical System (UMS), previously, the 

objective is to stabilize the pendulum to its origin 

angle whatever the linear velocity of the vehicle 

(although it is constant) [12], but now, the objective 

is to stabilize it by considering the 2DOF, without 

adding any new actuators and settle of just one 

input. 

The outline of the paper is as fellows; in Section 

2, we introduce the proposed vehicle to control, the 

inverted pendulum in cart; its model and its 

equivalent LFT-LPV representation. In Section 3, 

we will show the selected evolutionary algorithms, 

GA and ES, and the characteristics for such 

technique we use. In Section 4, after we get the 

closed loop system, including the disturbance, the 

measurement noise and the weighting functions, we 

will apply the optimization process to get the 

optimal weighting functions parameters, we notice 

here that we consider the angle as the only output. 

The underactuated degrees of freedom are taken into 

account in Section 5, and we will show the ultimate 

simulation results of stabilizing the both degrees of 

freedom. Finally, our conclusion is presented in 

Section 6. 

 

 

2 The Inverted Pendulum on Cart 
In this paper, we consider a vehicle called 

personal pendulum vehicle [20] (Fig.1). The 

personal pendulum vehicle is an inverted pendulum 

with two wheels, the rider is presented the 

pendulum who guides it moving forward or 

backward by inclining himself. 

WSEAS TRANSACTIONS on SYSTEMS Seif-El-Islam Hasseni, Latifa Abdou

E-ISSN: 2224-2678 271 Volume 18, 2019



 

Fig.1 General view of the personal pendulum 

vehicle 

The inverted pendulum in cart model is a 

benchmark for many autonomous vehicles [21] 

which is a vehicle has two degrees of freedom, one 

is relating on the angular coordinate (θ) and other is 

relating on translational coordinate (x), but the 

applied only input is the linear thrust force (F). The 

control objective is to stabilize the pendulum in the 

null angle, whatever the initial angle (Fig.2). In the 

next subsection we will show its nonlinear model.  

 

Fig.2 Geometric scheme of an inverted pendulum 

on cart 

2.1 The mathematic model of the inverted 

pendulum on cart 

A dynamic model of any mechanical system can 

be derived from Lagrange-Euler formulation, so, we 

can describe the dynamic model of any mechanical 

system as follows: 

                                             (1) 

Where; q is degree of freedom coordinate,    and 

   are its first and second derivative,      is the 

symmetric definite positive inertia matrix, the term 

        is the Centrifugal and Coriolis matrix, the 

term      are the gravitational torques and u is the 

inputs. 

The dynamical model of the considered system, 

the inverted pendulum, is presented in next 

expression [22],[20]: 

 
           

          
  

  
                  

  
  

  
    

 
 

        
   

 
 
                                                                              (2) 

Where, m is the mass of the cart, M is the 

pendulum mass, presents here the mass of the rider 

who guides the vehicle, l is the pendulum length, g 

is the gravity constant, b is the linear friction force 

coefficient and F is the linear force applied in the 

vehicle. Table 1 presents the nominal values. 

Table 1 Nominal parameters of the vehicle 
Parameter Description Value Unit 

m Cart’s mass 35 Kg 

M Pendulum’s mass 70 Kg 

l Pendulum’s arm length 1 m 

g Gravity constant 9.8 m.s-2 

b Friction coefficient 40 N.s.m-1 

The objective of this research is the robust control 

of a nonlinear system by the robust LPV, so, we will 

create the nonlinear model of the inverted pendulum 

(2) as an LPV with LFT representation in the next 

subsection.  

2.2 The LFT-LPV representation of the 

inverted pendulum on cart 

We have to present our system’s nonlinear model 

(2) as an LPV. The general state space of an LPV 

system is as follows: 

 
              

             
                          (3) 

Where; x is the state vector, u, the input vector, A, 

B, C, and D are the dynamic matrices, they are 

depending on the varying parameters ρ. 

As we mentioned previously, there are different 

presentations of an LPV system; polytopic, gridding 

and LFT. We use the last one to present the inverted 

pendulum model based on many advantages; i.e. 

single scheduled controller.  

We have to notice that the controller has the same 

representation of the system. 

We extract the two equations from (2): 

 
                                            

                                                        
    (4) 

We face on the issue that the term (             ) 

makes the model difficult to apply the chosen LPV 

technique. We have exceeded this problem by 

changing the generated signal by the controller, the 

new dynamic model is: 

 
                              

                            
               (5) 
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Where: 

                                        (6) 

By replacing one equation of (5) on the other, we 

take the nonlinearities as varying parameters. After 

some changes we extract the LFT-LPV state space 

(7) and its structure (Fig. 3): 
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Where: x is the states’ vector,          
 , u 

is the input, where is just the force F, zρ and wρ are 

the inputs and outputs of the parameters block Θ. 

The matrices: 

  

 
 
 
 
 
   
 

 
 

 

      

  
  

      
 
 
 
 

    

 
 
 
 
 

                                      
 

 
 

 

      
               

 

     

               
  

     
            

 
 
 
 
 

   

    

 
 
 
 
 

 
  

     
 

      
 
 
 
 

    

 
 
 
 
 

                 
                 

 

 
    

 

      
                  

 
 
 
 

             

    

 
 
 
 
                              
                              
 

 
  

 

      
     

 

     

                               
 
 
 

     

 
 
 
 

 
  
  

     

  
 
 
 

                     

         

  

 
 
 

 
  

 
 

 
 
  

 

 
 
 
  

                               (8)  

 

Fig. 3 LFT-LPV scheme of the inverted pendulum 

Before designing a controller to stabilize such 

LPV system, we need to provide the limit bound of 

each parameter. In our system, all of the parameters; 

ρ1 … ρ4 are depended on θ, theoretically      

      , but to avoid the non-controllability we 

have to reduce the bound to           . Table 

2 presents the range of each parameter. 

Table 2 The ranges of the varying parameters 
Parameter Description Min. value Max. value 

ρ1  
    

 
    -0.3 0 

ρ2        -0.83 0 

ρ3      0.17 1 

ρ4        0.03 1 

We notice that, in (7)-(8) we didn’t generate the 

closed loop system yet, just convert the plant (5) to 

LFT-LPV representation. We need to interconnect 

the plant with the disturbances and the weighting 

functions which are the important point on the H∞ 

controller design. Our contribution is to select the 

weighting functions parameters by the nature-

inspired algorithms (GA and ES). Next section, we 

introduce the algorithms that we develop and their 

characteristics. 

 

 

3 Nature-inspired Algorithms 
The nature-inspired optimization algorithms, 

especially which called evolutionary algorithms 

have common tasks on their procedures; selection of 

initial solutions randomly, evaluate the solutions 

depending on a fitness function, elimination of the 

worst solutions and generation of new solutions by 

the operations; crossover, mutation and selection. 

Since the implementation of initialization, 

replacement is not different between these 

algorithms; the significant difference is the 

generation of new solutions. 

Next, the description of such used algorithm (GA, 

ES) with its properties and explained by their 

pseudo-codes.    

3.1 Genetic Algorithms 

Genetic Algorithm (GA) is one of oldest 

evolutionary algorithms; it is the most popular EAs 

in engineering applications. It was developed and 

created by Holland [18], it is based on the 

Darwinian evolution of biological systems. Its 

operators are the biological operators; crossover, 

mutation and selection, which were applied on each 

population. The population is divided on 

individuals, where the best individuals have a 

chance to survive and transfer their characteristics to 

the next generation. The individual is called 

chromosome which presents a solution. In our work 

we consider the individual as a real-coded solution 

[23] presented by a vector and the generation is the 

iteration to generate a new set of solutions. The 

procedure is as illustrated in Algorithm 1: 

Algorithm 1 : Genetic Algorithm 

Initialize a solutions randomly; 

While max_Generation not meet do 

Evaluate each solution; 

Rank the solutions; 

 

 

  

 

y 

wρ 
zρ 

u 

Inverted 

Pendulum 

Θ
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Recombine_BMW pairs of parents; 

Mutate the offspring by pm; 

Replace the worst parents by best offspring; 

end while 

 

The operation Evaluate is the evaluation 

according its fitness function, where we need to 

rank the population according its fitness to perform 

the Best-Mate-Worst crossover [24], [25], all of the 

population’s individuals are passing on the 

crossover operation; Recombine_BMW is presented 

by the following expression: 

 
  

        
          

 

  
        

          
 
                      (9) 

The operation Mutate, is a random mutation 

which is implemented on a few of offspring 

(probability of pm) after the crossover operation. The 

Gaussian mutation is used as: 

  
      

                               (10) 

Finally, the operator of the selection, Replace, 

permits to replace the worst individuals of previous 

generation by the best individuals of the new 

generation in order to keep the size of population, 

and pass to the next generation. The parameters are 

shown at the end of this section in Table 3. 

3.2 Evolutionary Strategies 

Evolutionary Strategies (ES) is the first proposed 

evolutionary algorithm, which is based on the 

biological evolution, commonly used to the 

optimization problems of continuous systems. 

Likewise the GA, the ES operators are crossover 

(combination), mutation and selection [26]. Its main 

advantage is the self-adaptive control of parameters, 

especially in the mutation task. ES contains many 

different strategies; we use here the (μ+λ) strategy 

[27] with real-coding individuals; in the selection 

task we took λ individuals from the offspring’s 

population gathered with the best μ individuals from 

the parent’s population, and consider the result as a 

new generation. Unlike the GA, in the combination 

(crossover), we don’t need here to rank the 

population, because the combination is achieved 

randomly between fraction of individuals (we took 

λ). The procedure is illustrated in Algorithm 2: 

Algorithm 2 : Evolution Strategies  

Initialize solutions randomly; 

While max_Generation not meet do  

Generate new solutions; 

Recombine pairs of parents; 

Mutate the offspring; 

Rank the solutions; 

Replace new generation (μ+λ); 

end while 

 

The crossover task, Recombine, is implemented 

as in the case of the GA (9) by selecting λ parents 

randomly, with a real-coding of the individuals [23]. 

The main characteristic of ES is the self-adaptation 

mutation; so, we propose to use in this work a log-

normal auto-adaptive mutation in Mutate task, as: 

             
  

                                (11) 

  
      

                                   (12) 

Last operation in each iteration, Replace, we take 

λ individuals of offspring population and the best μ 

ones of parents’ population to transfer them to the 

next generation. The common parameters are; 

max_Generation which is equal to 20 and 

population size equal to 50. The other parameters 

are shown in Table 3. 

Table 3 Parameteres setting of different algorithms 
GA ES 

Par. Val. Par. Val. 

cross. 

pm 

α 

σ 

BMW 

0.04 

1/3 

0.04 

pm 

λ 

μ 

σ0 

0.3 

36 

14 

0.3 

 

 

4 Controller design and 
implementation 

In this section, the only output we consider is the 

angle (θ), where the objective is making the 

pendulum’s orientation null without considering the 

translational DOF. 

4.1 The closed loop generation 

Before passing to the controller’s design phase, 

we have to generate the closed loop system (plant-

controller), including the disturbances and 

weighting functions, we notice that the controller 

has the same structure of the plant (Fig. 4). 

The LFT-LPV state space of the augmented plant 

is as follows: 
                          

                      

                       

                       

               (13) 

       

Where: The state vector x ∈ R
n
; The control inputs 

vector u ∈ R
nu

; The measurement outputs y ∈ R
ny

; 

The controlled outputs z ∈ R
nz

; The exogenous 
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inputs (i.e. disturbances) w ∈ R
nw

,  zρ and wρ ∈ R
r
 are 

the inputs and outputs of parameter block Θ, with: 

Θ                          .  

 

 

Fig. 4 LFT-LPV closed loop structure 

The controller K(ρ) is also an LPV system with 

LFT representation, we present its state space as 

follows: 

                           

                         

                       

             (14) 

         

Where: xK ∈  R
n
 the controller states vector, y ∈  

R
ny

 the measurement outputs from the plant, u ∈ R
nu

 

the controller outputs, zKρ and wKρ ∈ R
r
  are inputs 

and outputs of the parameter block. 

We interconnect the inverted pendulum system 

(7)-(8) with the exogenous inputs (disturbance on 

the input, measurement noise on the output), we 

notice in (8), the output matrix (        ) 

because we consider the angle θ as the only output 

to stabilize. 

As a last step of the designing the closed loop 

scheme, we provide the applied force (F) from the 

generated input (u), from (6): 

                                     (15) 

The closed-loop scheme is presented in Fig. 5, 

there are two exogenous inputs (d: disturbance, n: 

noise), the measurement output is the error, the only 

input is the force F and we have two controlled 

outputs (ze and zu) which present the performance. 

Because we have four varying parameters (Table 2), 

so, zρ, wρ, zKρ and wKρ ∈   R
4
 . 

As we noticed previously, to design the controller, 

we have to introduce the weighting functions’ 

parameters. Our contribution is based on the choice 

of the weighting functions’ parameters by two 

evolutionary algorithms (GA and ES) to get the 

optimal desired performance and as a consequence a 

robust scheduled controller which guarantees this 

performance. Next subsection, we show the 

optimization procedure.  

 
Fig. 5 Closed loop plant-controller 

interconnection 

4.2 The optimization procedure 

The optimization tools, GA as well as ES need to 

specify some characteristics. The weighting 

functions formula has been taken as a first order 

filter, the performance criteria has been presented by 

We and Wu (Fig. 5). 

     
      

      
                          (16) 

     
      

      
                         (17) 

Therefore, each solution contains six parameters; 

                                            (18) 

The main effect of the optimization by the 

evolutionary algorithms is the multi-objective 

optimization. We have taken two dynamical indices, 

settling time, ST(θ(t)), and the overshoot, OV(θ(t)). 

The fitness is as follows: 

                                          (19) 

The controller synthesis algorithm is achieved by 

the small gain theorem via LMI conditions, the 

same algorithm we used in [12], the approach is 

developed in [11], [28] and we are helped by an 

LPV toolbox, LPVTools [29]. 

As we noticed, the optimization problem has been 

achieved by two algorithms (GA and ES), Algorithm 

3 presents the optimization algorithm. We note 

Algorithm_i to mean Algorithm 1 and Algorithm 2, 

because we use the both of them to solve the same 

problem. The details of their procedures and 

characteristics are mentioned in Section 3 and Table 

3. 

Algorithm 3 : Optimal weighting functions 

Initialize a solutions (18) randomly; 

While max_Generation not meet do 

Generate the closed loop (Fig. 5); 

Design the own controller; 

Evaluate the solutions based on fitness(19) 

Replace the solutions based on Algorithm_i; 

 
P 
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end while 

The optimal parameters which are obtained by 

GA and ES, are presented in Table 4. Thanks to the 

optimization algorithms, we guarantee the low pass 

filter of the control, on both of algorithms, because 

the H∞ guarantees this condition 
 

    
   

 

  
 , where K 

is the controller, P is the plant [1]. 

Table 4 weighting functions parameters 

Parameter ke τe1 τe2 ku τu1 τu2 

LPV-GA 3.28 4.01 6.60 0.67 6.36 0.24 

LPV-ES 6.16 7.49 2.72 1.09 5.96 0.64 

[12]  5 0.04 1 1 1 0.1 

4.3 Simulation results 

We get an LFT-LPV H∞ controller with 

weighting functions selection by GA optimization 

and another by ES. The fitness function was a 

combination between settling time and overshoot of 

the angle’s signal, the controller guarantees the 

robustness against the disturbances and noises. Fig. 

6 presents a comparison of the dynamic response 

between the obtained controller with GA (LPV-GA), 

the one obtained with ES (LPV-ES), and the one of 

the previous work [12]. The weighting functions, in 

[12], were selected by trial-and-error. no 

disturbance neither noise are applied, the initial 

angle is 60°,.  

In Fig. 6, we notice that the angle stabilization is 

done with the three controllers, but, the response has 

less settling time in LPV-GA and LPV-ES (less than 

1 s), unlike the settling time of [12] curve. In the 

other criteria, the overshoot, in LPV-GA curve, and 

[12] curve, the overshoot reach -4°, it is smaller than 

that in LPV-ES which is -6°. Between these three 

approaches, we note that the optimal performance is 

gotten by the weighting functions selected by GA.  

 

Fig. 6 Dynamic response comparison between 

LPV_GA, LPV_ES and [12]  

Now we pass to another point; the robustness 

against the exogenous inputs, the external inputs we 

choose is the input disturbance and the noise, as 

shown in Fig. 5. We apply a permanent noise 

between ± 2°. Starting from 5 s, we apply a 

disturbance force of 10 N, as shown in Fig. 7. 

Remark 1: In the simulation, we won’t apply the 

robust LPV controller on the approximated LPV 

model (7)-(8) but, on the original nonlinear model 

itself (4). 

Fig. 8 presents, a simulation of 15 s and a 

comparison of the angle response (θ) and the linear 

velocity (V) between LPV-GA and LPV-ES with 

presence of disturbance and noises (Fig. 7). In the 

curve of (θ) we notice that, there is robustness 

against the noises, we notice that there is a variation 

in 5 s because of the sudden applied force in 5 s, but 

ultimately the disturbance is rejected. 

We conclude in the last of this section, the nature-

inspired optimization tools, GA and ES, effect on 

the weighting functions selection. In addition to 

getting an optimal performance, the scheduled 

controller, LFT-LPV, guarantees the robustness 

against the external signals. But, the linear velocity 

(V) do never reach the null (the vehicle doesn’t stop) 

because we are not caring of it in the controller 

design and the system is considered as a Single 

Input Single Output  system (SISO). This is what we 

are discussing in the next section.  
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Fig. 7 The disturbance and the noise 

 
Fig. 8 The angle (θ), the velocity (V) and the force 

(F) responses with presence of disturbance and 

noise 

 

 

5 Extended LPV stabilization to the 
2DOF 
An underactuated mechanical system (UMS) is a 

system that has fewer control inputs than the 

degrees of freedom, as well as the inverted 

pendulum, which has two degrees of freedom, one is 

relating on translational coordinate (x), and the other 

is relating rotational coordinate (θ), but just one 

control input, the force (F). In the previous section, 

the inverted pendulum has been stabilized by a 

robust LPV H∞ controller, but, by considering it as a 

SISO system. In the previous simulation (Section 4), 

the velocity reaches the null very slowly (300 

seconds). 

The underactuation may impose a constraint; we 

have to take this constraint into account. May some 

scientists say; alternatively to consider the angle (θ) 

the only output, we consider tow outputs; the angle 

(θ) and the linear velocity (  ) and generate its 

suitable LPV controller. 

In fact, we tried to control the inverted pendulum as 

a general Single-Input-Multi-Outputs system 

(SIMO), we changed the output matrix of (7) by 

(    
   
   

 ), the response, either the angle or the 

velocity is oscillation and never stabilize (Fig. 9). 

The weighting functions are obtained by GA.  

 
Fig. 9 The dynamic response of the inverted 

pendulum as a SIMO system 

In literature, there is no unique methodology to 

control a UMS, there are different classifications. 

One of the most common is Seto and Baillieul 

classification. It is depending on the so-called 

Control Flow Diagram (CFD). According to this 

classification, a UMS could have a chain structure, 

tree structure or isolated-vertex structure, for more 

detail see; [30], [31]. 

The inverted pendulum is under the tree class. 

There are subclasses into the tree structure (A1, A2) 

[31]. Since the first (A1) could be converted to a 

chain class by changing the states and controlled as 

a chain structure by Backstepping [32]. The other 

subclass (A2) could not, in [33], the authors 

proposed a method; the configuration variables (the 

degrees of freedom) of the system should be 

controlled simultaneously; we have to include in the 

control law, some terms related to stabilize the angle 

(θ) and some terms related to stabilize the linear 

velocity (  ). We will denote to the state   ,by v. 
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The only expression has information about (θ) is 

the error (the measurement output of the LPV plant, 

Fig. 5), the closed loop system has been changed by 

adding proportional term related to (v), kv v (Fig. 

10), the gain kv presents the weight of the velocity, 

we choose kv=0.02. The new output is (θ + 0.02 v). 

Remark 2: In this stage, we didn’t design 

another controller, but we kept the controller we 

designed in Section 4.  

  

Fig. 10 Underactuated closed loop plant-

controller 

We pass now to the simulation phase, Fig. 11 

presents the dynamic response of the angle (θ), the 

velocity (V) and the force (F) of the both controllers 

(LPV-GA and LPV-ES), with the presence of 

disturbance and noise as well as presented in Fig. 7, 

we notice that, in addition to control of the angle, 

the velocity is controlled and it has been ultimately 

reaches to zero, on the both of curves (LPV-GA and 

LPV-ES). The overshoot exceeds (-20°), that what 

the pendulum needs to balance the pendulum. We 

note also that, the system is robust against the 

permanent noise, and the disturbance is rejected.  

 
Fig. 11 The angle (θ), the velocity (V) and the force 

(F) responses with adding the velocity term 

One important point on the robust control, when 

the H∞ controller is achieved, it is so guaranteed the 

worst case of uncertainties. That means, the closed-

loop system is asymptotically stable for any 

      . 

Remark 3: the stability of the augmented system 

is robust (plant-weighting functions), so, the 

performance of the system is robust because the 

performance is presented by the weighting 

functions. 

In our system, the pendulum’s mass presents the 

mass of the rider, we can apply the uncertainty 

according the rider’s mass, we took 70 Kg as a 

nominal mass (Table 1), in the next simulation 

figures, we took M=nominal value ± 43% (40 Kg, 

70 Kg and 100 Kg). Fig. 12 presents the response 

with uncertainty of LPV-GA. Fig. 13 presents the 

response with uncertainty of LPV-ES. We note that 

the controllers are robust against the uncertainty, the 

angular overshoot is between -20° and -30°, the 

peak velocity is 8 m/s when (M=100), 9 m/s when 

(M=70) and 10 m/s when (M=40). 

All of the previous simulations are achieved with 

60° as an initial angle. Next, the simulation results 

of the dynamic responses are achieved with 

different initial angles (60°, 30°, -30° and -60°). Fig. 

14 presents the dynamic responses of LPV-GA, Fig. 

15 presents the dynamic responses of LPV-ES. On 

the both of controllers, the 2DOF are controlled; the 

angle and the velocity reach the equilibrium point 

simultaneously; in addition it is robust whatever the 

initial angle.  
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Fig. 12 The angle (θ), the velocity (V) and the force 

(F) responses with uncertainty on LPV-GA 

 
Fig. 13 The angle (θ), the velocity (V) and the force 

(F) responses with uncertainty on LPV-ES 

 
Fig. 14 The angle (θ), the velocity (V) and the force 

(F) responses with different initial angles on LPV-

GA 

 
Fig. 15 The angle (θ), the velocity (V) and the 

force (F) responses with different initial angles on 

LPV-ES 

6 Conclusion 
In this paper, the robust stabilization problem of 

the inverted pendulum on cart is considered. We 

applied a scheduled robust controller with type 
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LFT-LPV H∞. As a first step we created its 

nonlinear model as an LPV system with LFT 

representation. Second, we were interesting on the 

weighting functions parameters selection; we 

suggested solving it by two nature-inspired 

optimization algorithms (GA and ES). Thanks to 

those, in addition to get an optimal performance, the 

robustness is guaranteed against the perturbations 

and the uncertainties. Last and important point we 

investigated, is the underactuation problem. The 

inverted pendulum imposes this constraint. Our 

objective is to balance the inverted pendulum, where 

its angle and velocity be zero, without adding 

another actuator. After we modify the closed loop 

structure, the simulation results showed an optimal 

obtained performance, the objective is successfully 

done. It is robust against the external signals and 

uncertainties.  
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